University of
Massachusetts

UMASS Lowell

University of Massachusetts Lowell

Autonomous Vehicle Design Report

for submission to the

Intelligent Ground Vehicle Competition (IGVC)
Oakland University

May 2009

Professor Fred Martin
Department of Computer Science
University of Massachusetts Lowell
1 University Ave
Lowell, Massachusetts

fredm@cs.uml.edu

Compiled by Mark Sherman
msherman@cs.uml.edu

Table of Contents

RODOE OVETVIEW......einiiiiiiiteee ettt ettt e b e st e bt e e bt e e ettt e e e bbeeeseanteeeenneee 2
RODOE HATAWATE.....cccuiiiiieeiiiiee ettt e et e e e ettt e e e st e e e e ataeeeeennssbsaaeeeeeeeeeaaaaaaeeeaeennns 3
ON-BOard COMPULET.....cc.ueiiiiiiiiiieeeie ettt et ettt et e et e st e e sabeeesabeeesabeeesbbeesbbateeeeseaaneee 3
Control SyStem EIECIIONICS.c.uuiiriiiiiiieesiie ettt ettt st e e sabeeesabeessabeeeessnnseaeeeseennnns 4
Safety System and EMErgency StOP.......ccocuieiriieiiiiiiiiieiiieeeieeeeite et ettt st e st e st ee e e s anaeeees 4
Drivetrain and CRaSSIS......ccuueeruieeriieeriieeeieeeiteeeitteeetteesteeeeseeesseeessseeessseeessseeensseesssseesssseesssssesssseennnes 5
SOTEWATE PLatfOTIM.......viiiiiieeiiie ettt et e ettt e et e e s bt eesbeeesabee e sseessssasaaeesennnssseeeesannnnns 7
Player/Stage ATCRILECTUTE.ccc..iiiiiiiiiie ettt ettt e et e et eesab e e e e e s sabbbeeeeeeennnes 7
DIIIVET INTEITACE. ...c.eeeiiiiiiieeieee ettt et ettt e et e e s e e s eeneee 7
GPS Navigation CRAIIENEE.........cccveieiuiieiiiieeiie ettt ettt e e stee et e e e steeeeaeeetaeeesseesnsseessseeensnsseeeas 8
REACHIVE SOIULIONS. ...ttt ettt ettt et e bt e bt e st e bt e eab e ettt e e s nbbeeeeaneee 8
VEFH UBHZATION. ..cceeviiieeeiiiee ettt ettt e ettt e e e st e e e et eeeestaeeeeessaeesessssaeesennsseeeaeaaaaaaaeeeeeeens 8
VectoriZed APPIOACH.cocuiiiiiiiiiiie ettt sttt et e 9
Planning SOIULION.eeiiiieiiiieeiie ettt e e et e st e e sabteesabeeesabeeesasbaeeeeseennnnsaeaaeesnnnnes 10
AUtoNOMOUS CRALIENZEoovviiiiiiieiiie et ettt e et e sttt e et e e st e e e s eenebbeeeeeeennnssees 11
2] 0] o 38 B 1S (<Te] 10) 1 USSP UPUPPPPP 12
HOoUgh Trans O ..o....oi ittt e et e et e e bneeeabee e 12
TEAM OTZANIZALION.eeeeuiiieiiiieeiiie ettt ettt et ee et e ettt e ettt e sttt e ettt e sabteesabaeesabteeeabteesabeeeeeessansbaaeeesssnnnreneeas 14
Appendix: EQuipment SPeCifiCatiONS.cccuuiiiiiiiriieiiie ettt ettt ee e e e e saeeeeeees 15

Robot Overview

The MCP IIL.5 is a four-wheel drive autonomous vehicle equipped with camera, laser range scanner,
GPS, and on-board processing. This vehicle represents four years of design by the Engaging Computing
Group, part of the Department of Computer Science, at the University of Massachusetts Lowell.

The robot drivetrain is based on two 24v wheelchair motors with one motor per side of the robot. Each
motor drives both wheels on its respective side, provided four wheel drive and differential steering.
This drivetrain is very powerful, easily capable of driving a load in excess of 3001lbs up a 15% grade
incline.

Safety shut-off is implemented in hardware, triggered by either the E-stop buttons on the robot or by
remote control. When in E-stop mode, the motor controller immediately ceases delivering any and all
power to the motors. The E-stop buttons are active-low failsafe circuits, requiring continuous current
flow to maintain Run mode. If the circuit or power is interrupted the system will default to E-stop.

This vehicle has two independent power systems, one at 12 volts and another at 24 volts. The 24v
system is used purely for motor power. The 12v system powers all of the control systems, including
electronics, sensors, and displays. The independence of these systems protects the control electronics
from under-voltage when the motors are under heavy load.

Four sensors comprise vehicle input: laser range scanner, camera, GPS, and compass. The laser range
scanner sweeps 180° in front of the vehicle and reports the distance to the closest object for every half-
degree. This data is used for obstacle identification and avoidance. The camera is mounted above the

robot body on a mast, providing a higher vantage point for vision processing. Computer vision systems
are used to interpret the camera data as field lines and obstacles. The GPS system uses two global
positioning receivers to determine the absolute location of the vehicle. The digital compass generates
immediate heading data.

An on-board computer provides the processing resources to generate motor control signals based on
sensor data. The computer is capable of sensor interpretation, vision processing, and area mapping in
real-time.

Control software was written in collaboration by a team of graduate and undergraduate students.
Significant collaboration was necessarily to develop sophisticated algorithms and systems to smoothly
and reliably operate the vehicle under varied conditions.

For clarity, this report will specify the “Navigation Challenge” as the “GPS Challenge.”

Robot Hardware

This version of the MCP is powered by a completely new processing system, based around a new on-
board computer. These systems have been upgraded to provide more performance and reliability. In
upgrading, the layout and wiring of all electronic systems has been redesigned to be more physically
robust, allow easier maintenance in the field, and provide improved aesthetics.

On-Board Computer

During development this year the existing computer motherboard failed. A replacement was quickly
selected. There were several constraints in the selection of a new motherboard and processor. The first
constraint was the new computer should not drain power any faster than previous computers used. In
the past, mobile and embedded processors were used, allowing several hours of battery life without
recharging. Second, the successor
computer should provide a higher level
of performance. The third constraint was
that the computer must not generate too
much heat. This computer, as part of a
vehicle, must perform reliably outdoors
in potentially extreme heat conditions.
The last of the major constraints was the
presence of specific I/O ports to
interface with the sensors. The camera
used in the vision system needs a
Firewire port. The laser range scanner
needs a hardware serial port and is
Figure I: Computer layout. incompatible with USB/Serial
converters.

The result of our research was the Intel DG45LF motherboard paired with a 3.0GHz dual core
processor. This combination provides four hours of computation on a single battery charge, and
produces acceptably low amounts of heat. During a four-hour run in the field, the ambient heat of the
control systems remained the same, and well within limits. A Firewire port was not built into the
motherboard, so several PCI-e Firewire adapter cards were tested. The selected card worked natively in
Linux and with the existing vision software pipeline.

A new power supply was also introduced, providing an ample improvement. The previous embedded
motherboard took power directly from the 12v battery. With all the other equipment running on the
system, the raw 12v line tends to vary and can interrupt the operation of the motherboard. The new M2-
ATX power supply was designed for automotive applications so it will survive large power fluctuations
and safely power down the computer when the battery gets too low. The new supply is visible on the
left side of Figure 1.

Control System Electronics

All electronics were rewired and hardware was remounted within the chassis. All hardware is mounted
on a single board in the chassis. This board can be easily removed for field maintenance. The board also
hides a channel beneath it where wires can be run. In this channel wires are both hidden from view and
protected. The 12v and 24v systems were run on opposite sides of the vehicle for safety and ease of
identification. There is little risk that a component could be accidentally powered incorrectly.

Safety System and Emergency Stop

The core of the safety system is the Emergency Stop controller. E-stop mode can be activated by
pressing any of the three red E-stop buttons on the robot or by activating the remote control. The
buttons are wired in series and are normally closed. Any interruption in the circuit, including a button
press or a break in the wire, will cause E-stop mode to be activated. This is greatly improved over the
previous iteration, where a loose wire would disable the safety systems. As another safety precaution, if
power to the board is interrupted, E-stop mode will automatically engage. This situation can occur
because the 12v control systems are on a different power source than the 24v motor controller. If the
12v system is interrupted, the 24v system could remain powered, but would automatically shut down as
a result of this feature. The control circuit is based on reed switch relays. The output of the circuit is a
relay connection. When power is removed from the relay coil the motor controller goes into E-stop
mode. The diagram can be seen in Figure 2.

L)

[

=
PYR- O—/r

PYWH-
12

MWCP E-Stop Control Circuit 2005
Rewision 2 - Mo Latching Switch

Input: normally closed series

]

[
o]
®1- IC1 IC2
o1 1 14 = g o1)
X1-20)—BSTP i BSTP 7 1E _qump ut:21
Butions G2 gyoo
3 E] 3 E]
| [CE i N
&0 ot ot
GND
2
[
- g 14
Q vﬁ
R1 Button
3 41
4
X320) i il Rz LED GMD
- E W—O“
“ R AR Remote

Remote

GMD

Figure 2: Emergency Stop control circuit.

GMD

Two E-stop buttons are on the top of the robot at its front, pointed upwards. The third button is on the

v

$PSH

-NC

pril
k Sherman

m!

UMA
LOWHLU

rdsearch Becomes Redlity

BOARD

2, 2009

an@cs . uml . edu

To when active per channel

70
Y]

A
KX =) 2
Remote
Wired

LED GND

Closed cir

O 8

it when ac

a
5
@

Estop Out

JWp-171-13 JWD-171-19

st8p Butflons
in

2 sries
_2| 1 2 11y cBosED

INTERRUPT WIRE TO ACTIVA! v ’

Fabricated by TEAMS Academy

Figure 3: Emergency Stop control board
layout. Red lines are underside traces.

mast facing backwards at shoulder level. If the robot
unpredictably moves backwards, it is likely a person
would hit the E-stop button accidentally, stopping the
robot before any bodily harm is incurred.

The motor controller latches when it receives the E-
stop signal from the control board. This safety feature
requires an operator to approach the robot to
manually restore the robot to Run mode. E-Stop mode
cannot be accidentally or remotely canceled.

The remote control uses an automotive after-market
remote lock system. When the “lock” button on the
remote control is pressed, the controller pulls a signal
pin to ground. As long as that signal pin remains
grounded the robot cannot be taken out of E-stop
mode. Pressing the “unlock” button on the remote
control releases the lock, but E-stop must still be
deactivated manually on the robot.

This control circuit was implemented as a printed circuit board and was custom fabricated using acid
etching. The design goals of this board were to be robust and self-documenting. Low-level control
boards like this one tend to stay with the project for many years, beyond the time when their designer
may leave the team. Future developers will have an easy time working with this safety board because it

is clearly laid out and labeled, as can be seen in Figure 3.

Drivetrain and Chassis

On the previous version of the MCP, each side of the drivetrain had a single sprocket and double link
chain to drive two wheels each. This drivetrain had multiple problems. The sprocket on the motor drove
one side of the double link chain, and the other side of the chain engaged with the wheel sprockets.
This usage is not the intent of double link chain and results in instability as well as inefficient power
transfer. The layout of the drivetrain was also problematic. The placement of the motor and wheels did
not allow the chain to wrap far enough around each sprocket for proper contact, resulting in gears
slipping and the chain falling off. Additionally, if either chain broke or fell off, the entire robot could
no longer drive.

This system was redesigned in favor of dual sprockets on the motor, one for each wheel that it drives
(Figure 4). Two chains are employed on each side of the vehicle, one to power the front wheel and one
to power the back wheel. With this new system a chain break does not completely disable the robot, as
only one out of four wheels would be
disconnected. There is less of a chance
of the chain skipping because the chains
wrap at least 180° around each gear. In
the process of rebuilding the drive
system, we also raised the chassis,
creating an additional 3 inches of
ground clearance. Clearance was an
issue in previous years when the frame
would get caught on steep inclines. For
additional torque, drive sprockets were
selected at half of their previous size,
creating an additional 2:1 reduction after
the stock transmission.

The mast was reworked into one piece
with a quick disconnect wire harness
Figure 4: Double drive sprocket on the motor. allowing easy setup and breakdown of
the robot for transportation. The mast
now supports a compass, two GPS units, a camera, monitor, and emergency stop button. The mast also
has a bright LED strip to let operators know when the robot is in autonomous mode.

At the front of the robot is the status and control panel. The top row contains all of the status LEDs and
the bottom all the control switches and fuses. Left and right are broken down into 24v and 12v
subsystems. Flanking either side are the Emergency motor stop buttons. The panel design can be seen
in Figure 5. The only hardware metric that is not on this panel is the voltage readout of the 12v system,
which is located on the rear panel near the user terminal.

Remote Mator 1 [Computer Ay
EStop Wireless on Power Power Power
') Yy I)
AN AN J / / N
Motor Motor Kill Switches

N
N

Charge Motor

N EStop
Electronios Gomputar Comput

— . Remole MolorOn 50A Fuse On i e
[TN Cantrol — v

I \ —~ (\ ™
| | Q \ / /)

\ -//. o/ S

24V Subsystem

25A Fuse o RE-? On /.— ~. @)
' Y Ny \ ~
() (} { ()

Y
R

AN N N/ _/

12V Subsystem

@)
py S/

Figure 5: Status and control panel design.

Software Platform

Player/Stage Architecture

Simulation was used heavily during development. The vehicle software is based on the Player/Stage
platform, where a robot control program (Player) connects to a simulation environment (Stage).
Without any code modifications, the Player can be connected to a real robot instead of the Stage. This
modularly allows for development in simulation with minimal changes to test the code on the actual
vehicle. Player/Stage is an open source project, and is freely available.' Player/Stage includes a
significant algorithm library, and use of these libraries is cited throughout this report.

Driver Interface

The robot driver interface is the critical bridge between the simulated and real operating environments.
While Player’s “position2d” interface provides a powerful and intuitive motion control scheme, no
drivers existed that would allow Player to communicate with our robot's motor control system. As a
result algorithms could be tested in simulated environments, but the same code could not be used in the
physical robot without time-consuming modifications. To resolve this issue, a custom position2d driver
was built to meet our specific needs. This driver utilizes Player's support for user-created plug-ins.

The Player control code can provide position2d commands in several formats: "car-like", motor
positioning, absolute heading, and forward and angular velocities. The format most compatible with our
configuration is a pair of values: forward velocity in meters per second, and angular velocity in radians
per second. Our driver accepts this input and computes the rotational speeds of the robot's left and right
wheels to match the desired course. These rotational speeds are then translated into power values that
represent percentages of the robot's top speed and are transmitted to the motor controller.

The driver also enforces speed limitations. If for any reason the driver receives a position command that
would require one of the motors to perform beyond a threshold level, the driver will scale down both
forward and angular the velocities by the closest possible ratio that allows the robot to remain on course
without exceeding maximum safe speed.

1 The Player Project: http://playerstage.sourceforge.net/

Another compatibility concern was position reporting. The position2d interface supports localization
via wheel odometry; however, the power-train design did not allow room for encoders, so odometry
support was not included in initial builds of the position2d driver. The intent was that localization
would be accomplished through the GPS interface, obviating the need for odometry. The Stage
simulation environment does not support simulation of a GPS interface, so programs working in the test
environment would use the position2d interface for localization, while programs working on the robot
would use the GPS interface. To resolve this conflict, the position2d driver was reconfigured to report
GPS data (converted into UTM easting and northing values) in place of odometry data. Code from the
GPS driver was streamlined and integrated into the position2d driver, along with support for multiple
source of GPS data to reduce position error.

When two GPS units are present, the driver uses the mean of the two reported positions; if more GPS
units are present, more elaborate algorithms are capable of detecting outliers and further refining sensor
precision. Interface functions that set or reset odometry were modified to offsets applied to the reported
GPS positions. The driver also transparently allows access to interfaces for the attached GPS units,
removing the need for a separate GPS driver.

GPS Navigation Challenge

For this challenge multiple solutions were developed by different students. Two of these solutions are
purely reactive, keeping no memory of their environment. The third solution, of which there are two
variations, utilizes mapping and planning. The final contest code will be selected in the field. This
section presents each of the solutions developed.

Reactive Solutions

This solution uses a simple GPS Navigation software module to provide a way point heading to the
obstacle avoidance routine. It does not use a map, planner, or an explicit finite state machine. The
control program navigates to the waypoints without any persistent information about the operating
environment. With this solution it will admittedly be more difficult to achieve the same level of success
as a control program using persistent world information with an intelligent planner. The obstacle
avoidance of a reactive solution will need to be far more robust, implementing an “instinct” for the
environment. Although a purely reactive system will likely be outperformed by a well designed
planning system, a reactive solution can be used to replace the simple navigation component of an that
intelligent planner. This combined system will be more robust, especially in unforeseen circumstances,
outperforming other solutions.

Two reactive solutions were designed. The first utilizes the off-the-shelf Vector Field Histogram (VFH)
algorithm. The second is custom in both design an implementation, using vector representations of
path safety. Both of these were designed as fall back systems, with the off-the-shelf solution being most
reliable but least efficient.

VFH Utilization

Desired waypoints are stored in a list. First the current location of the robot is recorded and added to the
back of the list. This ensures the robot will return to its “home” when all other waypoints have been
reached. Once a waypoint is visited it gets removed from the list. If there are more waypoints remaining
the closest waypoint is selected and the robot travels to it. During the search for the closest waypoint the
last one (home) is ignored.

The algorithm that moves the robot to the waypoints is simple. The obstacle avoidance and navigation
to the waypoint are done by the vector field histogram (VFH) algorithm that comes as part of Player.
VFH was first developed in 1991 for use with sonar range sensors.” When the VFH algorithm is
supplied with coordinates, it starts to move towards that goal. VFH does not need any information about
the objects present on the map as it does no planning. Obtaining the behavior best suited for open
outdoor environments is simply a matter of adjusting the parameters passed to VFH when the Player
server is started. VFH does not generate the most efficient paths, but it does work reliably.

One of the problems with using VFH is that it has no concept of course boundaries. These edges must
be artificially introduced into the laser range scanner values. In Player this can be done by creating a
custom driver for the laser device. The custom driver reads values from the default laser driver and a
custom position driver. The position driver provides the orientation and the current coordinates of the
robot, which are referenced against the known course boundaries. From this data the laser values are
manipulated to see an imaginary wall where the boundary is, preventing VFH from going outside the
bounds.

This approach is the lowest level of failsafe, intended to be used in the field only if the more
sophisticated solutions fail.

Vectorized Approach

In the Vectorized Approach, all laser range scanner data is collapsed into a number of vectors that
originate from the robot. These vectors either guide the robot towards open spaces or away from
obstacles. An approximate representation is shown in Figure 6. Vectors are classified under two types:
guiding vectors (which tell the robot where to go), and pushing vectors which describe areas containing
open space. Readings in the laser scan within a certain distance threshold produce pushing vectors,
which are larger for close ranged readings and readings from the front of the robot. Note that pushing
vectors do not necessarily represent a single physical object. Walls and large convex objects may appear
as multiple pushing vectors with small angles between them. It also presents the opportunity for certain
large concave surfaces to appear as a single high-magnitude pushing vector, which would help prevent
the robot from driving into traps. In addition to guiding and pushing vectors, space-type arcs are also
generated, to quickly ascertain if a certain bearing in front of the robot is open space or an obstacle.

2 Borenstein, J.: Koren, Y. (1991). “The vector field histogram- fast obstacle avoidance for mobile robots. Robotics and
Automation, IEEE Transactions on7 (3): 278-288.

The obstacle avoidance routine uses the
vector guides in addition to the distance
and bearing of the next waypoint. The
obstacle avoidance first uses the space-
type arcs to determine if the bearing to
the waypoint is in an obstacle region or a
open space region. If it finds an obstacle
region, it checks to see if the distance
readings on that bearing are closer than
the distance to waypoint.

_—

If the avoidance routine finds that the
bearing is in an open space region, it
will perform as follows. The closest
guiding vector towards the waypoint will
be selected. The select guide will be
vector-summed with the bearing to the

Figure 6: An approximate representation of the vector way point, which is given an equivalent

guides used by obstacle avoidance. The ‘pushing' vectors ~ magnitude. The most significant pushing

are red, indicating how to move to avoid obstacles. The vector is then selected and is vector-

'guide’ vectors are green, indicating how to move towards ~ summed into the guide. Note that

free space. although smaller pushing vectors are not

directly added into the final vector, their
existence prevents the creation of guiding vectors, thus they have an impact without risking over-
summed or null results.

If the avoidance routine finds that the bearing is in an obstacle-filled region, it will perform a wall-
following behavior until it finds that the bearing is in a clear area, minding course boundaries. The
wall-follower does not use guiding or pushing vectors, as the use of trigonometry with the original scan
data produces information that is much easier to interpret for the purposes of aligning to a wall.

Planning Solution

Most of the complexity of the GPS Navigation Challenge is in negotiating traps, switchbacks and other
potentially confusing obstacles in the field. Traps most often take the form of a circular obstacle where
the goal point is inside the circle and only one break in the barrier exists to enter and exit through.
Reactive solutions often fall victim to these traps, caught repeating the same incorrect behavior over
and over. If the robot manages to escape under reactive control it has no mechanism to prevent itself
from entering that trap again. To overcome this problem, a planning solution is necessary. A planning
solution creates maps of the environment as it is explored and designs efficient routes through that
environment.

Data from the laser range scanner are used to detect obstacles and open spaces relative to the robot.
Data from the GPS and compass are used to determine how those locations correspond to a larger
world-view, such as the competition field. As data are accumulated, a map is created that represents

10

the robot, this caution zone will also prevent the robot from attempting to pass through cells that would
bring it into contact with an adjacent obstacle. Contacts from beyond a certain range are discarded as
being unreliable (e.g. a steep incline may appear to be an obstacle). In the second pass, an algorithm

localization error. If the grid resolution is high enough that the cells are smaller than the dimensions of
scans for open space: cells are checked starting directly in front of the robot. If there are no laser

contacts within or close to a cell, that cell's Safe Certainty counter is incremented and the algorithm
moves on to check neighboring cells. Cells that are beyond reliable range or at the edge of the laser's

Certainty counter incremented. Cells surrounding the contact are also flagged for caution to allow for
field of vision are ignored.

how certain we are that any given location contains an obstacle or is safe to travel through. Utilizing
flagged as obstacles and the map cell that contains the coordinates of the laser contact has its Obstacle

this map, the path-finding algorithm is able to build efficient routes to any point within the

environment.
developed as an alternative. Having an alternative raises the likelihood one system will be successful.

because it allowed for more flexibility in path creation and smoother cornering. A 60 degree turn can
The hex grid can be seen in Figure 7.

be traversed more quickly and easily than a 90 degree turn. The square grid implementation was
Surroundings are mapped using a two-pass scan of laser data. In the first pass, all laser contacts are

Two different mapping solutions were explored: a hex grid and a square grid. A hex grid was chosen

In accordance with regulations, all map data are destroyed at the conclusion of a run.

9500020200002 00000 006 400 6 0000000000000
otetetetetetetetetateteltetetetetetetetetets
slelelelelelelelolololel ol el ol ottt otele
20 06 26 26 G - OO0 00 0 a0 0 (-
e S S S S S S S S S g
otetetetetetetetetatetetotetetetetetetete?
jeleleseselelelelelel el el el el el el et e e ete
€3, -G - 3E - 3 E - D0 O30 B30 Bl 3l 3L
e S S S S S S S S S
et 00t 0000000000 %000 %00 %0 0 %2
jeleleseselelelelelel el el el el el el et e e ete
€3, -G - 3E - 3 E - D0 O30 B30 Bl 3l 3L
000 e 0000202000000 00000000 0000 00000
et eteteteteteteteteletaletetetetetstate

4360030353000302420 0,0 0 0 0 0
R o € e - (g
b Lo Lot ol o o
3¢ otetelelelelelele
L > '62020%62020%620%0%
1 e S el el S S 0,0 § o ol g s
B B R b et R bt i i
OGO elose e e s ele ole e 0 et0lel0s0le0e
“............““.

4305420545030
OO bbb bl
Lo s o -y
o3e3eT0303030*
BB 0 0,000
R s - -
£ 4 5 e
£ -2
* £
5L
+2095%,
298505%s.
o N I SIS SN
O I G L I G I R R e G e e
ededeletoteteteletoteototeteteteletetelode
egelele] o) otetetetetetateteotetetetelets%000002000%
0 Sa byt G O G L e L L G L e G e e
‘0“‘..‘”0‘0 ‘0“0“‘”‘”0‘0‘.‘0.O‘.‘0.“.“.‘0.‘0.‘0.0..0‘.“.“-“.“.“.“.‘
1esetestete, 4 oteteteleletatetetetetetetetsle000002020%0%
LI I I L L I N L G A e e L I L X A I I R G e o
2eteteetetet0te 0000 0, 0.0 Seteleleletatete® et s % 2atetetetetetetelele
6562000300000 00 2020000000008 (T03030000404%% 30303030 0e302030%03
OO 0 b b b bbb oo b od ol £ sy Lo 6 O O
ol ol o o e - O Y o Lt L K
et t0tete 000000005002
ledeleleleletelelsteteledele
OO0 b O b bbb bbb b
S e i
oteteteteteteteletatelteltetete
ledeleleleleteletst et el ad e
OO 0 b O b bbb bbbl
i ol ol o o - -y
e e0etetetetetetele e
0202000202054 24%4*
02026202625 %0%0 %5250 20%6%0 %0 %
b o B b B B BB BB b o B o
atetetetetetetotetetoleleletelolele
£ 0 3 3 3l Bt el Ol 3 B 3ol B Sl Bt Sl et Sl el et

92020220
Setedelels
(Eelelstsle,
Belelelele o o 0 00
eSe%a%0 3000300400

11

When a cell contains contradictory information, it is flagged as low confidence. If further scans provide

Figure 7: Hex Cell map next to the simulated environment being mapped. Brighter green indicates a
The mapping algorithm is also capable of correcting for transient obstacles, such as a person walking.

higher confidence of empty space. Pink is a known obstruction. Blue is a safety barrier. The robot is

represented by the red vehicle on the left panel.

consistent evidence for one state over the other, the appropriate certainty counter will reach its
maximum value; readings that would increment the maxed-out counter instead decrement the opposing
counter. If scans consistently report contradictory readings (an unlikely but theoretically possible
situation), both counters will remain at or near their maximum values. In such a case, the danger of a
potential obstacle is considered too great and the cell will be avoided unless the robot can find no other
path.

The A* search algorithm in used to determine the best path from the current location to a destination.
A* is a best-first graph search that find the least-cost path based on a weighted heuristic function. The
higher a cell's obstacle certainty, the higher its path weight; the higher its safe certainty, the lower its
weight. There is also a buffer zone of caution around obstacle readings to prevent the robot from
brushing against an obstacle while trying to traverse an adjacent cell. The values assigned to these
weights are calibrated to encourage approaching unexplored areas if they could potentially reveal a
shorter path. Path nodes that pass through cells that have little or contradictory data are marked as
being low confidence, letting the robot know that it should recalculate the path after gathering more
data.

Autonomous Challenge

To discover the lines on the field the vision system uses a growing-regions blob detection algorithm. To
do this the images must first be transformed from the Red, Green, and Blue color space to the Hue,
Saturation, and Lightness color space. The HSL color space is used because it is easy to detect white
due to the Lightness factor. In the RGB color space, white, or shades of white, is anything where the
values of Red, Green, and Blue are the same. This seems easy enough to use to detect white, but many
objects do not meet that criteria exactly, resulting in signal noise. With the HSL color space, lightness
values can be examined directly making it much easier and faster to scan an image. This method is
prone to noise from glare off of other objects in the field. However, this can be easily reduced by
looking at the shape and size of blobs.

Blob Detection

Blob detection is done by scanning every pixel of the image. With the Growing Region algorithm the
scans occur in rows starting from the top of the image. Each pixel in the lightness layer of the image is
examined and compared to a variable threshold value which can be set according to the conditions of
the environment. If the pixel meets the threshold value, it is marked as the starting pixel for a line blob.
The row continues to be scanned until a pixel does not meet the threshold value, this pixel marks the
end of a line blob. Once a line blob is detected it is compared to the line blobs from the pixel row above
its row. If any line blobs from the previous row are found to overlap the current line blob, the two line
blobs are attached to one another and given the same blob ID. This process continues for each row of
the image. The result of the algorithm is a collection of line blobs which are combined by their blob ID
to make single blob objects. These blob objects contain the location of each pixel that outlines the blob,
along with the minimum and maximum bounds of each blob. Line blobs are found, connected to each
other, and formed into blob objects all in one pass through the image. The execution time of this

12

algorithm grows as the square of the image size; at our 640 x 480 resolution, it executes in
approximately 10 milliseconds. Once all the blobs have been detected, blobs with an irregular shape as
determined by examining their bounds are discarded as noise from glare. All accepted blobs are drawn
onto a black image to create a binary image for further processing (as seen is Figure 9).

Hough Transform

Once the blob detection is complete, the blobs are used to create a binary image. Each blob, provided it
meets the filter requirements, such as shape and size, are outlined onto a black image. This image
represents the blobs with the highest probability of being a line. The Hough transform is then used to
find straight lines in an image making it ideal for finding the path; blobs with straight edges which meet
a minimum length criteria are detected. Using Hough, we are also able to connect lines that are spaced
apart, like dashed lines or lines with objects covering part of them. This prevents the robot from
running off track when a white line painted on the course is not continuous. Once all the lines in the
binary image are detected they are filtered one more time. This final filtering step is based on the
compass heading. By tracking the rotation of the robot, the vision system can determine whether or not
it should be able to see both lines, just the right, or just the left line. If both lines should be visible, the
lines are examined to find one line of the left side of the robot which has a corresponding parallel line
on the right side. If only one line should be seen, the closest line to the robot is taken as the path. The
vision control program then looks at the distance of each line from the center of the image to determine
how far it is from running over the edge of the path. This distance can be provided to lower level control
programs to have the lines portrayed as obstacles, or a turn speed and radius can be provided to get
directly back to the center of the path.

13

Figure 8: Hough-detected lines drawn on the source image (left) and the Canny edge-detection
resultant image (right). Note the presence of the person breaking the line did not affect the result.

x
| a - i G

| —— : g
Figure 9: Left: image with Hough-detected lines drawn in blue. Right: binary image created by blob
detection.

14

Team Organization

Ryan Buckley, Computer Science, Blob detection.

Michael Court, Computer Science graduate student, Path following algorithms.

Jim Dalphond, Computer Science graduate student, Drivetrain, Computer, Electronics.
Munjal Desai, Computer Science graduate student, Reactive navigation, Player/Stage/Gazebo.
Katherine Dufault, Mechanical Engineering, Drivetrain, Chassis.

John Fertitta, Computer Science, Vision systems and autonomous navigation.

Seung Wook Kim, Computer Science graduate student, Line detection.

Michael McGuinness, Computer Science, Mapping, Pathfinding, Obstacle avoidance.
Gregory Pilla, Computer Science graduate student, Reactive navigation, Software integration.
Megan Reichlen, Computer Science, Blob detection, Data fusion.

Mark Sherman, Computer Science graduate student, Safety systems, Electronics, Integration
James Shimer, CS graduate student, Process communication, Intelligent Laser algorithms.
Chad Sweeney, Mechanical Engineering, Drivetrain machining.

Nat Tuck, Computer Science graduate student, Pathfinding, Obstacle avoidance.

Ryan Tucker, Computer Science graduate student, Hardware, Chassis plating

Tor Valeur, Computer Science, Driver code, Mapping, Pathfinding, Obstacle avoidance

Team overseen by Professor Fred Martin, UMass Lowell Computer Science

15

Appendix: Equipment Specifications
Laser Range Scanner: SICK LMS200 - $5,800
« 180° field of view
* 0-80 meter operating range
* 75 Hz scanning frequency
Computer:
« Intel DG45LF Mini-ITX Motherboard - $147.26
« Intel Core 2 Duo 3.0Ghz dual-core processor - $167.66
« 2GBRAM- $25
« Western Digital 160 GB SATA hard drive - $47.99
* M2-ATX power supply unit - $79.50
» 2-port PCI-e Firewire card - $59.00
« Apple iSight Camera - $200
« LCD Monitor - $100
Motor Controller: Roboteq AX3500 - $395
* 40A sustained max current (1 hour)
* 250A surge current
+ Automatic current and voltage limiting
+ Digital and analog control inputs
Drivetrain:
* 4-wheel drive, differential steering.
+ Invacare 1085952 motors with gearbox assembly - $1390
» 2:1 reduction outside of manufacturer gearbox
* Chain, sprockets, idlers — 173.80
« Chassis materials ~ $500
Custom E-Stop Circuit Board
« Electronic components - $40
« Remote Control system - $40
» Manufacture: donated, professional process ~ $65
Additional Electronics
« SECI12-15 Samplex 12V 15A Battery Charger - $149
« Batteries - $300

Base vehicle cost: $9600

16

